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Static Analysis of Microstrip Discontinuities

Using the Excess Charge Density in the
Spectral IDomain

Jestis Martel, Rafael R. Boix, and Manuel Homo, Member, IEEE

Abstract —Galerkin’s method in the spectral domain is ap-
plied to solve for the excess charge density existing on the strips

of open-end and symmetric gap discontinnities in multilayered

anisotropic substrates. The excess charge density is used to
determine the capacitance components of the equivalent circuits
of these discontinuities. Numerical results are provided and a

comparison with previous results existing iu the literature is
carried out,

I. INTRODUCTION

M ICROSTRIP circuits are invariably accompanied

by discontinuities. The rigorous characterization of

these discontinuities requires a determination of their

frequency-dependent scattering parameters by means of a

full-wave analysis [1], [2]. However, at low frequencies,

microstrip discontinuities can be characterized by equiva-

lent circuits consisting of lumped capacitances and induc-

tances [3], [4].

The aim of this work is the calculation of the lumped

capacitances of the equivalent circuits that are employed

to characterize the open-end microstrip discontinuity and

the symmetric gap microstrip discontinuity. In the litera-

ture, two different techniques have been used to calculate

these lumped capacitances. The first technique involves

the calculation of the capacitance parameters of single

and coupled rectangular microstrip patches [4]–[8], and it

has the inherent disadvantage of involving the subtraction

of two similar quantities that have to be numerically

computed [9]. The second technique is based on the

calculation of the excess charge density existing on the

strips of the discontinuity with respect to that existing on

the strip of an infinite microstrip line [91–[11]. This tech-

nique avoids the errors arising from the subtraction of

two close quantities that have to be numerically com-

puted, and it is the technique employed here.

Whereas in previous works the excess charge technique

was applied in the spatial domain [91–[1 11, in this paper
the excess charge density technique is applied in the

spectral domain. This makes it possible to analyze mi-

crostrip discontinuities embedded in multilayered media

with dielectric anisotropy in an easy way [81.
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The results obtained for the lumped capacitances of the

two discontinuities analyzed have been compared with

results obtained by means of static analyses [6]–[9] and

with results extrapolated from dynamic analyses [2]. Dis-

crepancies are encountered, which are attributed to the

lack of accuracy of existing results.

11. ANALYSIS

In Fig. l(a) is shown the cross section of both the

microstrip open-end discontinuity appearing in Fig. l(b)

and the micmstrip gap discontinuity appearing in Fig.

l(c). The conducting strips of the open-end discontinuity

and the gap discontinuity are assumed to be lossless and

infinitely thin. These conducting strips are placed at $he

Mth interface of a stratified medium bounded by two

grounded cofiducting planes. The stratified medium is

composed of N layers of lossless anisotropic dielectric

materials. The dielectric materials are assumed to present

uniaxial anisotropy, their optical axes being aligned with
the y axis defined in parts (a)–(c) of Fig. 1. According to

this, each dielectric material in the stratified medium is

characterized by a permittivity tensor:
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(i=l, ““o, N).

At low frequencies, the microstrip discontinuities shown

in parts (b) and (c) of Fig. 1 can be characterized by the

lumped element equivalent circuits shown in, respectively,

parts (d) and (e). In the following, we will explain how to

calculate the IIumped capacitances COC, CPg, and C~g.

A. Calculation of COC

The free superficial charge density cr(x, z) on the semi-

infinite strip of the open-end discontinuity shown in Fig.

l(b) can be separated into two terms:

a(x, z)=am(x)u(z )+a=x(x, z). (2)

The first ,term can be interpreted as the charge density

that would etist on half the strip of the microstrip IIine
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Fig. 1. (a) Anisotropic and multilayered substrate. (b) Strip of an open-end microstrip discontinuity lying on the Mth
interface of the multilayered substrate shown in (a). (c) Strips of a symmetric gap microstrip discontinuity lying on the Mth
interface of the multilayered substrate shown in (a). (d) Equivalent circuit of the open-end discontinuity. (e) Equivalent
circuit of the symmetric gap discontinuity.

involved in the discontinuity if this microstrip line were

infinite. This term is the product of the free superficial

charge density per unit length existing on the strip of the

infinite microstrip line G-~(x) and the step function u(z).

The second term, U,X(x, z), represents the excess free

superficial charge density which is stored in the neighbor-

hood of the strip end at the open-end discontinuity. The

edge capacitance of the open-end microstrip can be calcu-
lated from this excess charge density by means of the

expression

infinite strip. As can be seen from (3), in order to calcu-

late COC, it suffices to determine the excess charge

density, UCX(X, z). In this paper, we have focused our

attention on calculating the two-dimensional Fourier

transform of the excess charge density, namely, 6=X(CX,~).

In terms of tieX(CZ, /3), COC can be simply obtained.

To obtain tie,(a, ~), we have made use of the expres-

sion that relates the excess charge density, a.X(x, z ), and
the electrostatic potential, +(x, y = H~, z), at the Mth

interface of Fig. l(b), i.e.

cc

H
+w/2 @(x, y= HM, z)

aex(x, z) hdz

Coc = 0 ‘W’2
v

(3) =Jg:>(. -J, Y=~M>Y’ ‘%Z -Zr)

where V is the known constant potential on the semi- ~[Emu+ aex(.xr, z’)] LWdz’ (4)
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where G(x – x’, Y = HM, Y’ = HM) z – z’) is the dielectric

Green’s function of the problem when the field point and

the source point lie on the rnth interface. If we apply

two-dimensional Fourier transforms to (4), the following

algebraic relation in the spectral domain is obtained:

The spectral Green’s function, G(a, P), aPPearing in

this expression can be analytically obtained by using the

recurrent algorithm developed in [8]. The Fourier trans-

form of the free superficial charge density per unit length,

ti~(a), can also be calculated by applying the Galerkin

method in the spectral domain, as shown elsewhere [12].

In fact, when the Galerkin method is used, the spatial

charge density per unit length, G-m(x), is obtained as a

weighted basis functions expansion of the following type:

NI

u.(x) = ~ Una:(x). (6)
~=o

Assuming G(a, ~) and ti.(a) are known functions, the

Galerkin method in the spectral domain has been em-

ployed in (5) to calculate tie.(a, 9). For that purpose, the

excess charge density, ~.X(x, z), has been expanded in

terms of basis functions as indicated below:

NI N2

aex(x, z) = ~ ~ bnna:(x)a~(z). (7)
~=o~=o

As can be seen, the basis functions in (7) have been

factored into two independent functions of the spatial

variables x and z. The functions am”(x) coincide with

those used in (6). This means that we have assumed that

the charge density per unit length on the strip of the

infinite microstrip line, u~(x), and the excess charge den-

sity, oeX(x, z), depend on the x variable in the same way,

This assumption simplifies the mathematical treatment of

the problem and it only seems to be far from reality (see

Fig. l(b)) in the neighborhood of the 90’ conductor cor-

ners where the singular behavior of U.X(x, z) differs from

that of mm(x) [13]. When the two-dimensional Fourier

transforms of expressions (6) and (7) are introduced into

(5) and Galerkin method in the spectral domain is used,

the following system of linear equations for the b.m

coefficients is obtained:

NI

2~2VC&(a = O)ti~(p = O) – ~ a.Al.~
~=o

= ~ ~ b..r~’ (8)
~=()~=11

(k=o,”” ”,N,; l=o, ”””?w)

where &k and I’.~l are double integrals with infinite

limits that can be expressed as

(,9)

(n, k=o,’””, iv,; l=o,”””, zV2)

rx’=j+”j”+”~(~)~)fi:(~)—cc—m
.tin(~)ti:* (a)til*(~) dad@ (10)

(n, k= O,””, N1;rn,l=O,. ”., NZ).

In this work, to represent the functions a:(x) and N(z)

defined in (6) and (7), we have chosen the functions

2x

(-)2 ‘2” ~
u:(x) = —

[()]

.2 1/2 (Ii)
‘iTW

1– ~
w

z +!zm [~(z-zm+l) -~(z-zm)] (12)
dqz) = –

,Wl

(m=O,O.O, N2)

z~=O; z~<zl<”””<zN2+l

or

[

2,(Z1– Z)

ma(z) = ~zl–2.)2 ‘

o,

U“yz)=

(::2::1)
(“ )Zm+l–z

z m+l –Zm

zo<z<z~

elsewhere

2

)
Zm_ ~<z <Zm

z m+l —zm–l

2

)
7 Zm<z<zm+l

‘m+l —zm–l

elsewhere

(13)

(WZ=l,.. ”,N2)

zO=O;~O<z~<”””<zNi+l.

In (11), Tz. are even Chebyshev pol~omials of the first

kind. In choosing G#(.x) and am(z), we have tried to

satisfy the known physical constraints of U.X(X, z) as accu-

rately as possible. For instance, the functions defined in

(11) properly account for the singular behavior of cr=X(x, z)

in x = f w/2 except in the neighborhood of the z = O

plane [13]. Ccmcerning the functions defined in (12) (pulse

functions, Fig. 2(a)) and in (13) (triangle functions, “Fig.

2(b)), these functions do not seem to account for the

singularity that ueX(x, z ) presents at the z = O plane of
Fig. l(b). In any event, this singularity has been simulated

in an approximated way by choosing nonequispaced grid

points in the piecewise approximation of the ueX(x, z)

dependence on the z variable. In order to choose the grid

points z~ (m = 0,” “ ‘, N2 + 1) defined in (12) and (13)., We

have made use of the technique employed in [141 to
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Fig. 2. Piecewise approximation of the mcX(x,z) dependence on z
using (a) pulse functions (IV2 = 3) and (b) triangle functions (JV2= 3).

approximate the c~arge density per unit length on an

infinite conducting strip. To start with, we have assumed

that the dependence of ogX(x, z) on the z variable for a

fixed value of the x variable (.x = XO) can be approxi-

mated as

[

1
+k1z+k2, O<z<a

~=x(xo, z) = z (14)

( 0, z>a

where a = z~, + ~ is the distance from the end of the strip

(z= Oplane h Fig. l(b)) to the z plane in which U=.(X, z)
can be neglected (the optimal value of a has been calcu-

lated by means of a convergence analysis, which is pre-

sented in the next section) and the constants /cl and kz

are calculated by requiring that ~gX(xO, a) = O and
a
‘aex(xo,z)l z=~ = 0. After determining the quantitiesa,

~~ and kz, the grid points z~ defined in (12) and (13)

have been estimated by requiring that the same amount

of charge be located between any two consecutive points

for the fixed value XO [141. This condition can be mathe-

matically expressed as

~m+l 1

f ({ )
—+klz+kz dZ

z 1Zm —
al

(15)

J (– )

Nz+l”

06
+ klz + kz dz

It can be noticed that the function proposed in (14) to

simulate the dependence of m,,(x, z) on the z variable
– 1/z singularity that ~~,~ ~~ z

accounts for the z ( ) exhibits

at the points of the end of the strip which are not in the

vicinity of the 90° corners. This ensures a nonoscillating

piecewise approximation of the m,X(x, z) dependence on

the z variable near the singularity [14]. One point of

numerical interest is the fact that the pulse functions in

(12) and the triangle functions in (13) have been normal-

ized to have unity area. Owing to the normalization, the

coefficients b.n, must all have the same order of magni-

tude and this prevents the linear system in (8) from being

ill conditioned [15].

The direct numerical computation of the double inte-

grals obtained when the Fourier transforms of m~(.x) and

inn(z) (see (11), (12), and (13)) are introduced into (9)

and (10) requires high CPU times. We have substantially

reduced these CPU times by employing a method which is

explained in detail in the Appendix.

B. Calculation of Cpg and C,g

An excess charge scheme applied in the spectral do-

main has been also employed to determine the capaci-

tances C,~ and CPg of the T network used to characterize

the symmetric gap discontinuity shown in Fig. l(c). As in

previous papers [10], we have calculated the excess charge

density on the strips for two different modes of excitation:

the even mode, in which both strips are raised at the same

constant potential, and the odd mode, in which the strips

are raised at opposite potentials. In the case of the even

mode of excitation, we have calculated C;C, which is the

edge capacitance of an open-end microstrip line facing a

magnetic wall, In the case of the odd mode of excitation,

we have calculated C~C, which is the edge capacitance of

an open-end microstrip line facing an electric wall. These

capacitances C~C and C~C are related to the capacitances

Cpg and C,, by means of the expressions [10]

C:c= c (16)

C:c = c:: +2C $&?. (17)

As for the case of the open-end discontinuity, we have

derived expressions which relate the two-dimensional

Fourier transforms of the electrostatic potential at the

Mth interface of Fig. l(c) and the two-dimensional Fourier

transforms of the excess charge density on the strips of

the gap discontinuity (see (5)) in both the even mode and

the odd mode. To solve for the two-dimensional Fourier

transforms of the excess charge density in each mode, the

Galerkin method in the spectral domain has been ap-

plied. The functions employed to approximate the depen-



MARTEL et al.: STATIC ANALYSIS OF MICROSTRIP DISCONTINUITIES 16,27

TABLE I
CONVERGENCE ANALYSIS OF COC/ w WITH THE NUMBER OF

BASH FUNCTIONS FOR AN OPEN-END DISCONTINUITY
IN VACUUM (w/h= 10)

Number of Pulse Triangle
basis functions functions functions

N,+l\N, +l C.. Iw [vFim) C.JW [pF/m)

I 11 11 7.77 1

=

10.3
15

10.1
11 21 9.25 9.9
11 31 9.69 I
11 41 9.85 10.1
11 51 9.92 I 10.0
1 6 9.96 10.0
1 7 10.0 10.0

2 1 8.79 11.6
2 2 10.7 11.4

2 3 11.2 11.7
2 4 11.4 11.7
2 5 11.6 11.7

2 6 11.6 11.7

3 1 8.79 11.6

3 2 10.7 11.4
3 3 11.3 11.7

3 4 11.5 11.7

3 5 11.6 11.7
3 6 11.6 11.7

dence of the modal excess cliarge densities on the spatial

variables x and z are analogous to those defined in (11),

(12), and (13).

III. NUMERICAL CONVERGENCE

From a numerical point of view, the values of the

capacitances CO., C,g, and CPg obtained by using the

analysis method described in the preceding section de-

pend mainly on three parameters:

●

●

●

N{= IVl + 1, the number of functions employed to

approximate the excess charge density dependence

on the x variable (see (11)).

Nj = Nz + 1, the number of functions to approximate

the excess charge density dependence on the z vari-

able (see (12) and (13)).

a. the distance from the end of the strips to the z

plane in which the excess charge density is assumed
to vanish.

In Table I, we provide the results obtained for the edge

capacitance COC of an open-end discontinuity in vacuum

when different values of N; and N: are used. Compari-

son is made between the results obtained by using pulse

functions and triangle functions to approximate the

TABLE II
CONVEItGENCE ANALYSIS OF COC/ w WITH THE
DISTANCE a FOR AN OPEN-END DISCONTINUITY

(w/k = 1). (a) IN VACUUM. (b) ON ALUMINA
SUBSTRATE (,, = 9.6)

(a)

,crCx(x,z) dependence on the z variable. It can be noticed

that if triangle functions are used in the approximation of

ucX(x, z ), the convergence to a fixed value of COC is

achieved when N; = 2 and N: = 3. If pulse functions are

used in the approximation of u,.( x, z ), we need to take at

least N; = 2 and N;= 6 to achieve convergence. The

convergence is faster in the case of triangle functions

since these functions provide a continuous linear piece-

wise approximation of mel(x, z), which is better than the

discontinuous step piecewise approximation provided by

pulse functions. It has been observed that, for narrow

strips (w\ h < 1), it is only necessary to take N; = 1 tO

achieve convergence in the results of CO= [161. Simillar

results for the convergence of C,g and CPg with the
number of basis functions have been found for the case of

the symmetric gap.

In Table II, we analyze how COCvaries with increasing

a in an open-end discontinuity in vacuum and an open-end

discontinuity whose strip lies on alumina substrate.

Whereas in the case of the open-end microstrip printed

on alumina the excess charge is found to be concentrate ed

within a length a = 6h, in the case of the open-end

discontinuity in vacuum the excess charge density is found

to be concentrated within a length a = 16h at least.

In Table 111, we analyze the variation of C~C and C~C in

a symmetric gap discontinuity as the distance a increases.

In strong coupling conditions (s\ w = 0.1), the excess

charge in the even mode is much more concentrated near

the physical end of the discontinuity than the excess

charge density in the odd mode. However, in weak cou-

pling conditions (s\ w = 10), the excess charge in both the

even mode and the odd mode extends for similar lengths.

IV. RESULTS

In parts (a) and (b) of Fig. 3, we plot two sectional

views of u,,( x, z) for two different open-end microstrip

discontinuities. It can be seen that as the permittivity of
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TABLE III
CONVERGENCEANALYSIS OF C~CAND C& WITH THE DISTANCE a FOR

A SYMMETRIC GAP DISCONTINUITY IN VACUUM (w/h = 1).
(a) STRONG COUPLING CONDITIONS (s/ w = 0.1).

(b) WEAK COUPLING CONDITIONS ($/ w = 10)

: fls~ ,

n h

!
alh C;e/w (pF/m) CZ=IW(pF/m) afh C:.fW (pF/m) C; Jw(pFl@

4 1.22 40.5 6 13.2 13.8
6 1.22 41.2 8 13.4 14.0
8 1.22 41.5 10 13.5 14.2

10 1,22 41.7 12 13.5 14.3
12 1.22 41,8 14 13.6 14.4
14 1.22 41.8 16 13.6 14.4

(a)

w

---

—
f

‘.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-

(b)
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I I I I I I I I

-o.5-o.4-o.3-O.2-0,1 O 0.1 0.20,3 0,4005

(a)

—

w

---

r
a

L

‘o 0.05 0.1 0.15 0.2

Z/a

(b)

Fig. 3. Two sectional views of &eX(.x, z )/ COC. Solid lines stand for an
open-end discontinuity in vacuum (w/h = 1; a/h = 20; V = 1 V), and
dashed lines stand for an open-end discontinuity on alumina substrate

(cr=9.6; w/h=l: a/h=lO; V=l V).

300, I 1 1 1 I I I I I 1 1 1 1111I

[
100:

n

t

1~
O.l 1 10

w/h
Fig. 4. Edge capacitance of open-end discontinuity (COC/ w). Compar-

ison with results reported in [6] (O), [9](A) and [8](•).

1000~ I 1 i 1 I I 1 1[ # I 1 I 1 1 1 Ij

1

101 t 1 t 1 1 1 1 I i I t 1 1 I 1 1 1 I
0.1 1

W($+4)
10

Fig. 5. Edge capacitance of open-end discontinuity (COC/ w). (a)

Sandwiched configuration (h, = IZ3 = 0.5hl, <2 = ●3 = 9.6). (b) Inverted
configuration (hl = hz = 0.5h3, .s2 = 1, e3 = 9.6). (c) Suspended configu-
ration (Jz2 = O.lhl, ●3 = 1, .s2 = 9.6). Comparison with the results appear-
ingin[7](A, D,0),

the substrate increases, the excess charge becomes more

concentrated around the physical end of the discontinuity.

In Fig. 4, the capacitance per unit strip width, CO, \ w,

of several open-end microstrip discontinuities is plotted

versus the ratio w/h. Comparison is made with the static

results obtained by other authors using the rectangular

patch technique [6], [8] and the excess charge technique

[9]. Best agreement (within 2%) is found with the results
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Fig. 6. Series and parallel capacitances of the equivalent circuit of a
symmetric gap on a simple isotropic substrate (.s, = 8.875, w/ JZ= 1, and
h = 0.508 mm.). Present method (solid line) as compared to [2] (dashed
line) and experiments (I) [2].

5oo~rr!l, 1 I I 11i 11I I 1 I J

n

///l ..’ . . .-: ...1’. 7

t /// \.... r “. M

v h

- i

0.05 0.1 1 5

s/(4+hJ
Fig. 7. Series and parallel capacitances of the equivalent circuit of a
symmetric gap. Solid lines stand for CPg / w’. Dashed lines stand for
CJg \ w. (a) Inverted configuration: (.2) vacuum, (3) sapphire (~11 = 633
= 9.4, e22 = 11.6). (b) Suspended configuration: (3) vacuum, (2) sap-

phire (~11 = cqs = 9.4, cZ2 = 11.6). (c) Sandwiched configuration: (2) and

(3) sapphire (cll = ●qs =9.4, Ez, = 11.6). In all cases, hl = IZZ = hj and
w/(hi+ h2)= 1.

appearing in [8], in which the edge singularities have been
very apprcrxirnat~ly included in the evaluation of tlhe

charge density existing on a rectangular patch. The aver-

age discrepancies with the results obtained in [6] and [9]

lie around 5’%0 and 20’%0 respectively. In these two latter

papers, the edge singularities have not been taken into

account in the approximation of the excess charge density

on an open-end strip and in the approximation of tlhe
charge density on a rectangular patch. We believe this

omission produces the differences that have been found
between those results and ours.

In Fig. 5, the edge capacitance per unit strip width of

open-end discontinuities in sandwiched, suspended, and

inverted configurations is plotted versus w\ h. Compari-

son is made with the results reported in [7]. In this case,

the discrepancies between our results and those reported

in [7] lie between 570 and 15?k0.

ln Fig. 6, we present results for the capacitances (;,g

and CPg of the equivalent circuit of a symmetric gap. The

results are compared with those obtained by dynamic

analysis and with measurements [2], Our results seem to

show a better agreement with experimental results than

those obtained with dynamic analysis.

To show the versatility of the method of analysis cle-

scribed in this paper, in Fig. 7 we present original results

for the capacitances cPg and C,g of the equivalent circuit

of gap discontinuities printed on sapphire in sandwiched,

suspended, and inverted configurations.

V. CONCLUSIONS

The. lumped capacitances of the equivalent circuits

which characterize the open-end and the symmetric gap

microstrip discontinuities are calculated in an efficient

and accurate way. These two discontinuities are consid-

ered to be embedded in a multilayered substrate involving

uniaxial dielectric materials, The Galerkin method in the

spectral domain is used to solve for the two-dimensional

Fourier transfbrm of the excess charge density existing on

the strips of the discontinuities. The basis functions for

approximating the excess charge density on the strips are

chosen so as to fit the physical features of the problem as

accurately as possible. The validity of the method is

checked by testing its numerical convergence with respect

to the number of basis functions and with respect to the

distance from the end of the strips in which the excess

charge is assumed to dispppear. The results obtained are

compared with those appearing in the literature and

average discrepancies between 5% and 109o are observed.

These discrepancies are attributed to the lack of accur~acy

of previously computed results. Original design graphs are

presented in which the generality of the method of analy-

sis built in this ~aper is demonstrated.

*PENDIx

In this appendix, we are going to explain the method

employed to calculate the double integrals resulting in (9)

for the case where the functions defined in (11) and (12)

Y,
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are used to approximate u.,(x, z). The rest of the double

integrals that appear in the calculation of COC, CPg and

C~g can be carried out in a similar way.

The integrals appearing in (9) have been split into two

terms:

Ai.~ = fl:~ + A~.~l@, (Al)

(n, k=o, ”””, fvl; l=o, ”””,lv,)

where

fxzk=/::/-::[f%Jn- G.(W3]

“&:(a);tiF(a)ti~*(B)dadB(A2)

(n, k=o,”’”, N1;l=o, ”””, N,)

and

.6Z*(P) dad/? (A3)

In (A3), G.,(a, /?) stands for the asymptotic behavior of

G(a, P), which can be expressed as

‘“’(”’B)=&
where

(A4)

(M)

To calculate the integrals appearing in (A2), we have

first transformed the integration variables into polar coor-

dinates, i.e.,

(n, k=o,..., N1; l=o, NJ., NJ.

The integrals appearing in (A6) have been numerically

computed. Since the integrands exponentially decay as

Y ~ co (owing to the exponential decay of ~(y) – Ga,(y)),
the infinite numerical integrals in the y variable have
been quickly performed,

The calculation of the integrals appearing in (A3) has

been carried out in the spatial domain. By using Parseval’s

theorem, these integrals have been expressed as

A~,la, = 47r2~+”~:W;&@)c7’(z)

[1/

.
‘w;’Ga.(x -x’, z-z’) ;sg(z’)

—cc —

1“u@n(X’) dx’dz’ dxdz

(n, k=O,..., iVl; 1=0, N2)N2) (A7)

sg ( Z) being the sign function, and

Ga,(x ‘X’, Z – Z’) =

4(X -x’): (z_ 2/)2 (As)

where K has been defined in (A5). When the functions

defined in (12) and (13) are introduced into (A7), the

integrals in the z and z’ variables can be calculated in

closed form. For the case of the pulse functions (see (12)),

we obtain

()T%‘n
w

[()]

, ~ 1/2

1– ~
w

()T22k
w

‘ ~,’~(x – x’) dxdx’

[()]
l–~.

w

(n, k=O,.. -, Nl; 1=0, N2), N2).

where x(x – x’) can be written

and

(A9)

Jqx–x’) =@l+Jx- x’)- 91(x-x’)

–Ql+l(x –x’)+L21(x -x’) (A1O)

(1=0,..., N2)

-2jz; +(x-x’)’j

(1=0, -., N2) (All)

L2[(x-x’)=
z,+:- zl[z’1n(4z?+(x-x’)’ -z,)]

(1=0,00 .,N2). (A12)

To compute the integrals appearing in (A9), we have

consecutively applied Gauss–Chebyshev quadrature for-
mulas, which account for the singularities of the integrand
in the integration limits. Since numerical problems still

appear owing to the logarithmic singularities of the inte-

grands at x = x’ (see (A12)), the functions &21(x – x’)

appearing in (A12) have been rewritten

(1=0,.., N2). (A13)
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Since the terms enclosed between square brackets do not

show any singularity when x = x’, they have been inte-

grated by using Gauss–Chebyshev quadrature formulas.

The singular logarithmic terms have been integrated in

closed form by using [17, eq. (7)], and the orthogonality

relations of Chebyshev polynomials.
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