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Static Analysis of Microstrip Discontinuities
Using the Excess Charge Density in the
Spectral Domain

Jestis Martel, Rafael R. Boix, and Manuel Horno, Member, IEEE

Abstract —Galerkin’s method in the spectral domain is ap-
plied to solve for the excess charge density existing on the strips
of open-end and symmetric gap discontinuities in multilayered
anisotropic substrates. The excess charge density is used to
determine the capacitance components of the equivalent circuits
of these discontinuities. Numerical results are provided and a
comparison with previous results existing in the literature is
carried out.

I. INTRODUCTION

ICROSTRIP circuits are invariably accompanied

by discontinuities. The rigorous characterization of
these discontinuities requires a determination of their
frequency-dependent scattering parameters by means of a
full-wave analysis [1], [2]. However, at low frequencies,
microstrip discontinuities can be characterized by equiva-
lent circuits consisting of lumped capacitances and induc-
tances [3], [4].

The aim of this work is the calculation of the lumped
capacitances of the equivalent circuits that are employed
to characterize the open-end microstrip discontinuity and
the symmetric gap microstrip discontinuity. In the litera-
ture, two different techniques have been used to calculate
these lumped capacitances. The first technique involves
the calculation of the capacitance parameters of single
and coupled rectangular microstrip patches [4]-[8], and it
has the inherent disadvantage of involving the subtraction
of two similar quantities that have to be numerically
computed [9]. The second technique is based on the
calculation of the excess charge density existing on the
strips of the discontinuity with respect to that existing on
the strip of an infinite microstrip line [9]-[11]. This tech-
nique avoids the errors arising from the subtraction of
two close quantities that have to be numerically com-
puted, and it is the technique employed here.

Whereas in previous works the excess charge technique
was applied in the spatial domain [9]-[11], in this paper
the excess charge density technique is applied in the
spectral domain. This makes it possible to analyze mi-
crostrip discontinuities embedded in multilayered media
with dielectric anisotropy in an easy way [8].
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The results obtained for the lumped capacitances of the
two discontinuities analyzed have been compared with
results obtained by means of static analyses [6]-[9] and
with results extrapolated from dynamic analyses [2]. Dis-
crepancies are encountered, which are attributed to the
lack of accuracy of existing resulits.

II. ANALYSIS

In Fig. 1(a) is shown the cross section of both the
microstrip open-end discontinuity appearing in Fig. 1(b)
and the microstrip gap discontinuity appearing in Fig.
1(c). The conducting strips of the open-end discontinuity
and the gap discontinuity are assumed to be lossless and
infinitely thin. These conducting strips are placed at the
Mth interface of a stratified medium bounded by two
grounded coriducting planes. The stratified medium is
composed of N layers of lossless anisotropic dielectric
materials. The dielectric materials are assumed to present
uniaxial anisotropy, their optical axes being aligned with
the y axis defined in parts (a)-(c) of Fig. 1. According to
this, each dielectric material in the stratified medium is
characterized by a permittivity tensor:

Glll 0 0
E'=¢| 0 €, 0 (D
0 0 €
(i=1,--+-,N).

At low frequencies, the microstrip discontinuities shown
in parts (b) and (c) of Fig. 1 can be characterized by the
lumped element equivalent circuits shown in, respectively,
parts (d) and (e). In the following, we will explain how to

calculate the tumped capacitances C,,, C,,, and C,,.

oc’ “pg>

A. Calculation of C,,,

The free superficial charge density o(x, z) on the semi-
infinite strip of the open-end discontinuity shown in Fig.
1(b) can be separated into two terms:

(2)

The first term can be interpreted as the charge density
that would exist on half the strip of the microstrip line

o(x,2) =0 x)u(z) +0o,(x,2).
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Fig. 1. (a) Anisotropic and multilayered substrate. (b) Stri
dinterface of the multilayered substrate shown in (a). (c) Stri
interface of the multilayered substrate shown in (a). (d)
circuit of the symmetric gap discontinuity.

involved in the discontinuity if this microstrip line were
infinite. This term is the product of the free superficial
charge density per unit length existing on the strip of the
infinite microstrip line o(x) and the step function u(z).
The second term, o,,(x,z), represents the excess free
superficial charge density which is stored in the neighbor-
hood of the strip end at the open-end discontinuity. The
edge capacitance of the open-end microstrip can be calcu-
lated from this excess charge density by means of the
expression
+w/2

]:f_w/z 0, (x,2)dxdz

oc

> (3)

where V' is the known constant potential on the semi-

Z,v C C

5T T
(&)

p of an open-end microstrip discontinuity lying on the Mth

| Z,vp

P Pg

ps of a symmetric gap microstrip discontinuity lying on the Mth
Equivalent circuit of the open-end discontinuity. (¢) Equivalent

nfinite strip. As can be seen from (3), in order to calcu-
late C,., it suffices to determine the excess charge
density, o, (x,z). In this paper, we have focused our
attention on calculating the two-dimensional Fourier
transform of the excess charge density, namely, a. (a, B).
In terms of 4,,(a, B), C,. can be simply obtained.

To obtain 4, («, B), we have made use of the expres-
sion that relates the excess charge density, o, (x,z), and
the electrostatic potential, ¢(x,y = H,,,z), at the Mth
interface of Fig. 1(b), i.c.

d)(x;y:HM’Z)
+ o0 + o
=f f G(x—x’,y=HM,y’=HM,z——z’)

(o2 u(2) + o, (1, 2)] dy’ dz’ (4)
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where G(x — x',y = H,,,y' = Hy;, z — 2') is the dielectric
Green’s function of the problem when the field point and
the source point lie on the mth interface. If we apply
two-dimensional Fourier transforms to (4), the following
algebraic relation in the spectral domain is obtained:

é(a,y=Hy,B)=G(a,B)[6(a)i(B) +6..(a,B)].
)

The spectral Green’s function, G(a, 8), appearing in
this expression can be analytically obtained by using the
recurrent algorithm developed in [8]. The Fourier trans-
form of the free superficial charge density per unit length,
G{a), can also be calculated by applying the Galerkin
method in the spectral domain, as shown elsewhere [12].
In fact, when the Galerkin method is used, the spatial
charge density per unit length, o{(x), is obtained as a
weighted basis functions expansion of the following type:

Ny
ox)= Y a,o0(x).
n=10

(6)

Assuming G(a, B) and G{«) are known functions, the
Galerkin method in the spectral domain has been em-
ployed in (5) to calculate &,,(a, B). For that purpose, the
excess charge density, o,,(x,z), has been expanded in
terms of basis functions as indicated below:

N, N,
0u(5,9)= £ T byol(n)e"(2). ()

As can be seen, the basis functions in (7) have been
factored into two independent functions of the spatial
variables x and z. The functions ¢/(x) coincide with
those used in (6). This means that we have assumed that
the charge density per unit length on the strip of the
infinite microstrip line, o,{x), and the excess charge den-
sity, o,,(x, z), depend on the x variable in the same way.
This assumption simplifies the mathematical treatment of
the problem and it only seems to be far from reality (see
Fig. 1(b)) in the neighborhood of the 90° conductor cor-
ners where the singular behavior of o,,(x, z) differs from
that of ofx) [13]. When the two-dimensional Fourier
transforms of expressions (6) and (7) are introduced into
(5) and Galerkin method in the spectral domain is used,
the following system of linear equations for the b,,
coefficients is obtained:

N,
20Vek(a=0)d(B=0)— L a,A,
n=0
N N
=Y ¥ bl (8)
n=0m=0
(k=0,~-',N1;l=0,"',N2)
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where A', and T% are double integrals with infinite
limits that can be expressed as

et A Fn 1 ~ K% ~ % '
M= [ [ Cla ) (@) ()5 (B) dad

(9)
(n’k=0,"',Nl;l=0,"',N2)
- Gt o
57(B)oL (2)5*(B) dedB (10)

(n,k=0,-,N;m,l=0,-,N,).

In this work, to represent the functions ¢;’(x) and o™(z)
defined in (6) and (7), we have chosen the functions

T (Zx)
2 2n 7
wa(x)=ﬁ_2‘x—2'ﬁi (11)
3]
w
(n=0,...,N12
o™(z) =~ [4(2 = 2pp1) —u(z = 2,)] (12)
Zm+1 " Zm ‘
(m=0,,N,)
zo=0;z0<z; < <zp, 4y
or
2z~ 2)
— Z,<2<2Z
o’(z) = (zl—zo)2 0 !
0, elsewhere

2y 12 <Z,

z—z, _ 2
m—1

b
2 Zm—-1)\ Zm+1 " Zm—-1

o"(z)= ( Z, 12 )( 2 ) .
, z,<z<2, .1
Zm+1_zm zm+1_Zm—1 ” m
0, elsewhere
(13)
(m=1,--+,N,)
z2g=0;2z5<z; <+ <zy,4q-

In (11), T,, are even Chebyshev polynomials of the first
kind. In choosing ¢*(x) and o™(z), we have tried to
satisfy the known physical constraints of o,,(x, z) as accu-
rately as possible. For instance, the functions defined in
(11) properly account for the singular behavior of o,,(x, z)
in x=+w /2 except in the neighborhood of the z=0
plane [13]. Concerning the functions defined in (12) (pulse
functions, Fig. 2(a)) and in (13) (triangle functions, Fig.
2(b)), these functions do not seem to account for the
singularity that o,,(x,z) presents at the z =0 plane. of
Fig. 1(b). In any cvent, this singularity has been simulated
in an approximated way by choosing nonequispaced grid
points in the piecewise approximation of the 0,(x,2)
dependence on the z variable. In order to choose the grid
points z,, (m=0,---, N, +1) defined in (12) and (13), we
have made usc of the technique employed in [14] to
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Fig. 2. Piecewise approximation of the o,,(x,z) dependence on =z
using (a) pulse functions (N, = 3) and (b) triangle functions (N, = 3).

approximate the charge density per unit length on an
infinite conducting strip. To start with, we have assumed
that the dependence of o,,(x,z) on the z variable for a
fixed value of the x variable (x = x,) can be approxi-
mated as

1
—=+kz+k,,

Uex(x052)= \/;

0<z<a

(14)

0, z>a

where a =z, ., is the distance from the end of the strip
(z = 0 plane in Fig. 1(b)) to the z plane in which g, (x, z)
can be neglected (the optimal value of a has been calcu-
lated by means of a convergence analysis, which is pre-
sented in the next section) and the constants k; and k,
are calculated by requiring that o, (xy,a)=0 and

E‘Tex(xm z)|,—, = 0. After determining the quantities a,

ky, and k,, the grid points z,, defined in (12) and (13)
have been estimated by requiring that the same amount
of charge be located between any two consecutive points
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for the fixed value x, [14]. This condition can be mathe-
matically expressed as

/‘Zm+1

af 1
fo V_Z—+klz+k2)dz

It can be noticed that the function proposed in (14) to
simulate the dependence of o,,(x,z) on the z variable
accounts for the z~'/? singularity that o, (x,z) exhibits
at the points of the end of the strip which are not in the
vicinity of the 90° corners. This ensures a nonoscillating
piecewise approximation of the o, (x, z) dependence on
the z variable near the singularity {14]. One point of
numerical interest is the fact that the pulse functions in
(12) and the triangle functions in (13) have been normal-
ized to have unity areca. Owing to the normalization, the
coefficients b,,, must all have the same order of magni-
tude and this prevents the linear system in (8) from being
ill conditioned [15].

The direct numerical computation of the double inte-
grals obtained when the Fourier transforms of ¢/ x) and
o(2) (see (11), (12), and (13)) are introduced into (9)
and (10) requires high CPU times. We have substantially
reduced these CPU times by employing a method which is
explained in detail in the Appendix.

dz 1
= . (15)

N, +1

1
— + kiz+k,
z

-

B. Calculation of C,, and C,

An excess charge scheme applied in the spectral do-
main has been also employed to determine the capaci-
tances C,, and C,, of the = network used to characterize
the symmetric gap discontinuity shown in Fig. 1(c). As in
previous papers [10], we have calculated the excess charge
density on the strips for two different modes of excitation:
the even mode, in which both strips are raised at the same
constant potential, and the odd mode, in which the strips
are raised at opposite potentials. In the case of the even
mode of excitation, we have calculated Cg,., which is the
edge capacitance of an open-end microstrip line facing a
magnetic wall. In the case of the odd mode of excitation,
we have calculated CZ,, which is the edge capacitance of
an open-end microstrip line facing an electric wall. These
capacitances C;, and Cg, are related to the capacitances

C,, and C,, by means of the expressions [10]
Cc:.=C,, (16)
Co.=C,, +2C,,. (17)

As for the case of the open-end discontinuity, we have
derived expressions which relate the two-dimensional
Fourier transforms of the electrostatic potential at the
Mth interface of Fig. 1(c) and the two-dimensional Fourier
transforms of the excess charge density on the strips of
the gap discontinuity (see (5)) in both the even mode and
the odd mode. To solve for the two-dimensional Fourier
transforms of the excess charge density in each mode, the
Galerkin method in the spectral domain has been ap-
plied. The functions employed to approximate the depen-
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TABLE I
CONVERGENCE ANALYSIS OF C,,, /W WITH THE NUMBER OF
Basis FUNCTIONS FOR AN OPEN-END DISCONTINUITY
N Vacuum (w /h =10)

Number of Pulse Triangle
basis functions functions functions
N +1]| No+1 ] Coc/w (pF/m) [ Coc/w (pF/m) |
1 1 7.77 10.3
1 2 9.25 9.95
1 3 9.69 10.1
1 4 9.85 10.1
1 5 9.92 10.0
1 6 9.96 10.0
1 7 10.0 10.0
2 1 8.79 11.6
2 2 10.7 114
2 3 11.2 11.7
2 4 11.4 11.7
2 5 11.6 11.7
2 6 11.6 11.7
3 1 8.79 11.6
3 2 10.7 11.4
3 3 11.3 11.7
3 4 11.5 11.7
3 5 11.6 11.7
3 6 11.6 11.7

dence of the modal excess charge densities on the spatial
variables x and z are analogous to those defined in (11),
(12), and (13). '

III. NumeRricaL CONVERGENCE

From a numerical point of view, the values of the
capacitances C,., C,,, and C,, obtained by using the
analysis method described in the preceding section de-
pend mainly on three parameters:

* N/ =N, +1, the number of functions employed to
approximate the excess charge density dependence
on the x variable (see (11)).

* N} =N, +1, the number of functions to approximate
the excess charge density dependence on the z vari-
able (see (12) and (13)).

* g, the distance from the end of the strips to the z
plane in which the excess charge density is assumed
to vanish.

In Table 1, we provide the results obtained for the edge
capacitance C,, of an open-end discontinuity in vacuum
when different values of N; and N are used. Compari-
son is made between the results obtained by using pulse
functions and triangle functions to approximate the
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TABLE 11
CONVERGENCE ANALYSIS OF C,. /W WITH THE
DistancE @ ForR aN OPEN-END Discontinurry
(w/h=1). (a) In Vacuum. (b) ON ALUMINA
SUBSTRATE (€, = 9.6)

€ ‘
S Erfgr h g
}

a/h | Coe/w (pF/m)
g ig‘;’ a/k | CooJw (pF/m)
0 13'8 4 57.1
12 13.9 6 57.2
8 57.2
14 13.9
10 57.2
16 14.0 D =5
18 14.0 -
20 14.0

(b)
(2)

a,.(x, z) dependence on the z variable. It can be noticed
that if triangle functions are used in the approximation of
o, (x,z), the convergence to a fixed value of C,, is
achieved when Nj =2 and N;=3. If pulse functions are
used in the approximation of a,,(x, z), we need to take at
least N;=2 and N;=06 to achieve convergence. The
convergence is faster in the case of triangle functions
since these functions provide a continuous linear piece-
wise approximation of o,,(x, z), which is better than the
discontinuous step piecewise approximation provided by
pulse functions. It has been observed that, for narrow
strips (w/h <1), it is only necessary to take Nj=1 to
achieve convergence in the results of C,. [16]. Similar
results for the convergence of C,, and C,, with the
number of basis functions have been found for the case of
the symmetric gap.

In Table II, we analyze how C,_ varies with increasing
a in an open-end discontinuity in vacuum and an open-end
discontinuity whose strip lies on alumina substrate.
Whereas in the case of the open-end microstrip printed
on alumina the excess charge is found to be concentrated
within a length a=6h, in the case of the open-end
discontinuity in vacuum the excess charge density is found
to be concentrated within a length a =164 at least.

e

In Table ITI, we analyze the variation of C, and C;, in

© a symmetric gap discontinuity as the distance a increases.

In strong coupling conditions (s/w =0.1), the excess
charge in the even mode is much more concentrated near
the physical end of the discontinuity than the excess
charge density in the odd mode. However, in weak cou-
pling conditions (s /w = 10), the excess charge in both the
even mode and the odd mode extends for similar lengths.

IV. REsuLTs

In parts (a) and (b) of Fig. 3, we plot two sectional
views of o, (x,z) for two different open-end microstrip
discontinuities. It can be seen that as the permittivity of
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TABLE III
CONVERGENCE ANALYSIs OF C{, aND C9. wiTH THE DISTANCE a FOR
A SYMMETRIC GAP DISCONTINUITY IN VAcuuM (w /h =1).
(a) STRONG CouPLING CoNprTIONS (s /w = 0.1).
(b) Weak CoupLING CONDITIONS (5 /w = 10)

€& ~sp_ |

& h
}
a/h | Cs./w (pF/m) | C7./w (pF/m) || a/h | Cs./w (pF/m) | Cs. /w(pF/m) |
4 1.22 40.5 6 13.2 3.8
6 122 412 8 13.4 40
8 122 415 10 135 142
10 122 417 12 13.5 143
12 1.22 118 14 13.6 14.4
4 1.22 1138 16 13.6 14.4

(a) (b)

30y i
] ]
& | 5
£ 25 i
] 1
s | i
§ 2043 H
o It !
N & /
o 15\ '
110 -
%
35 -
Il | ] ] ! f 1 I i

-0.5-04-0.3-0.2-0.1 0 0.1 0.2 0.3 04 05

O ox(x=0,2)/C_ (V/m?)

0.15 0.2

0 0.05 0.1
z/a

b)

Fig. 3. Two sectional views of o,,(x,z)/C,,. Solid lines stand for an
open-end discontinuity in vacuum (w/h=1; a /h=20; V=1 V), and
dashed lines stand for an open-end discontinujty on alumina substrate
(,=96,w/h=1:a/h=10; V=1 V).
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Fig. 4. Edge capacitance of open-end discontinuity (C,_ /w). Compar-
ison with results reported in [6] (O), [91 (A ) and [8](O).
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Fig. 5. Edge capacitance of open-end discontinuity (C,./w). (@)
Sandwiched configuration (h, =k, =0.5h,. e, = €5 =9.6). (b) Inverted
configuration (A, = h, = 0.5k;, €, =1, ¢; =9.6). (¢) Suspended configu-
ration (A, = 0.14;, €3 =1, €, = 9.6). Comparison with the results appear-
ing in [7) (A, 3,0).

the substrate increases, the excess charge becomes more
concentrated around the physical end of the discontinuity.

In Fig. 4, the capacitance per unit strip width, Coe /W,
of several open-end microstrip discontinuities is plotted
versus the ratio w /h. Comparison is made with the static
results obtained by other authors using the rectangular
patch technique [6], [8] and the excess charge technique
[9]. Best agreement (within 2%) is found with the results
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Fig. 6. Series and parallel capacitances of the equivalent circuit of a
symmetric gap on a simple isotropic substrate (e, = 8.875, w /A =1, and
h=0,508 mm.). Present method (solid line) as compared to [2] (dashed
line) and experiments (I) [2].

500 TTTT] T T T T T TTT] T L
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1 Ll 3 a1l 2 Ll
0.05 0.1 1 5

s/(h,+h,)

Fig. 7. Series and parallel capacitances of the equivalent circuit of a
symmetric gap. Solid lines stand for C,, /w. Dashed lines stand for
C,, /w. () Inverted configuration: (2) vacuum, (3) sapphire (e = €33
=94, €, =11.6). (b) Suspended configuration: (3) vacuum, (2) sap-
phire (e, = €33 = 9.4, €y = 11.6). (¢) Sandwiched configuration: (2) and
(3) sapphire (e;; = €33 = 9.4, €, =11.6). In all cases, h;=h, = h; and
W/(h1+h2)=1.
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appearing in [8], in which the edge singularities have been
very approximately included in the evaluation of the
charge density existing on a rectangular patch. The aver-
age discrepancies with the results obtained in [6] and [9]
lie around 5% and 20% respectively. In these two latter
papers, the edge singularities have not been taken into
account in the approximation of the excess charge density
on an open-end strip and in the approximation of the
charge density on a rectangular patch. We believe this
omission produces the differences that have been found
between those results and ours.

In Fig. 5, the edge capacitance per unit strip width of
open-end discontinuities in sandwiched, suspended, and
inverted configurations is plotted versus w /h. Compari-
son is made with the results reported in [7]. In this case,
the discrepancies between our results and those reported
in [7] lie between 5% and 15%.

In Fig. 6, we present results for the capacitances C,,
and C,, of the equivalent circuit of a symmetric gap. The
results are compared with those obtained by dynamic
analysis and with measurements [2]. Our results seem to
show a better agreement with experimental results than
those obtained with dynamic analysis.

To show the versatility of the method of analysis de-
scribed in this paper, in Fig. 7 we present original results
for the capacitances C,,, and C, of the equivalent circuit
of gap discontinuities printed on sapphire in sandwiched,
suspended, and inverted configurations.

V. CoONCLUSIONS

The . lumped capacitances of the equivalent circuits
which characterize the open-end and the symmetric gap
microstrip discontinuities are calculated in an efficient
and accurate way. These two discontinuities are consid-
ered to be embedded in a multilayered substrate involving
uniaxial dielectric materials., The Galerkin method in the
spectral domain is used to solve for the two-dimensional
Fourier transform of the excess charge density existing on
the strips of the discontinuities. The basis functions for
approximating the excess charge density on the strips are
chosen so as to fit the physical features of the problem as
accurately as possible. The validity of the method is
checked by testing its numerical convergence with respect
to the number of basis functions and with respect to the
distance from the end of the strips in which the excess
charge is assumed to disappear. The results obtained are
compared with those appearing in the literature and
average discrepancies between 5% and 10% are observed.
These discrepancies are attributed to the lack of accuracy
of previously computed resuits. Original design graphs are
presented in which the generality of the method of analy-
sis built in this paper is demonstrated.

APPENDIX

In this appendix, we are going to explain the method
employed to calculate the double integrals resulting in (9)
for the case where the functions defined in (11) and (12)
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are used to approximate o,,(x, z). The rest of the double
integrals that appear in the calculation of C,., C,, and
C,, can be carried out in a similar way.

The integrals appearing in (9) have been split into two
terms:

A, =0 + A (A1)
(n,k=0,"',N1;l=0,"',N2)
where
+oo atoor ~
=f_ /- [G(CV’B)_Gas(a’ﬁ)]
1
&w”(a)ﬁﬁwk*(a)&’*(ﬁ)dadﬁ (A2)
(n,k=0,"-,N;1=0,-,N;)
and

o0 o 1
Ndor= [ Gl B2 @) ()
¢ (B)dadp (A3)

_In (A3), G,,(, B) stands for the asymptotic behavior of
G(a, B), which can be expressed as

. K
Gas(“’ﬁ)=_‘/aT:'—B_z

(A4)

where

. AS
‘/611622+‘/€M+1 M+1 (AS)

To calculate the integrals appearing in (A2), we have
first transformed the integration variables into polar coor-
dinates, i.e.,

I T /2 +o
an =4 L j(; [
6-00” 2 0 . .
(7 ) Jjysin@
(n,k=0,--,N;1=0,---,N,).

The integrals appearing in (A6) have been numerically
computed. Since the integrands exponentially decay as
v — o (owing to the exponential decay of G(y)— G, (y)),
the infinite numerical integrals in the y variable have
been quickly performed.

The calculation of the intcgrals appearing in (A3) has

been carried out in the spatial domain. By using Parseval’s
theorem, these integrals have been expressed as

Y R R 7"
Koalus =4[ - [ e (x)'(2)

[ e

ol (x")dy dz’] dxdz
;1=0,

G(v) = G,.(v)]

F*(y,0)6™(y,0)ydyde (A6)

—x',z— z’)%sg(z')

(n,k=0,"+-,N;;1=0,,N,) (A7)
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sg(z) being the sign function, and

G (x—x',z—-2")= (A8)

K
\/(x — x’)2+(z - z')2
where K has been defined in (AS). When the functions
defined in (12) and (13) are introduced into (A7), the
integrals in the z and 2z’ variables can be calculated in
closed form. For the case of the pulse functions (see (12)),
we obtain

AL as__4 /+wu;/22f+wu;/22( ) [

2x
Tw(;)
--—2—2—172-%(x—x’) dx dx’
X
-3
w
(n,k=0,---,N;1=0,---,N,). (A9)

where #(x — x’) can be written

Fx—x) = Proy(x~ )~ P(x—x)

i3 —x)+ 2(x =) (A10)
(I=0,-",N,)
and
K
Ql(x—x’)=Z—_—21[zlln(\/zf+(x~x’)2+z,)
-2 z,2+(x—x’)ZJ
(1=0,--,N,) (A1)
K Y
.@,(x——x’)=ZT_—ZI[zlln(\/zlz+(x—x’) - z)
(I=0,--,N,). (A12)

To compute the integrals appearing in (A9), we have
consecutively applied Gauss—Chebyshev quadrature for-
mulas, which account for the singularities of the integrand
in the integration limits. Since numerical problems still
appear owing to the logarithmic singularities of the inte-
grands at x =x' (see (Al12)), the functions Z(x — x)
appearing in (A12) have been rewritten

(x—x")= {.@z(x —x')—2In ( l):/;_g,[ )}

Ix—x’l)

+2In| —F—

V2z,

(1=0,---,N,). (A13)
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Since the terms enclosed between square brackets do not
show any singularity when x = x', they have been inte-
grated by using Gauss-Chebyshev quadrature formulas.
The singular logarithmic terms have been integrated in
closed form by using [17, eq. (7)], and the orthogonality
relations of Chebyshev polynomials.
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